首页> 外文OA文献 >MaMaDroid: Detecting Android Malware by Building Markov Chains of Behavioral Models
【2h】

MaMaDroid: Detecting Android Malware by Building Markov Chains of Behavioral Models

机译:mamaDroid:通过构建马尔可夫链来检测android恶意软件   行为模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rise in popularity of the Android platform has resulted in an explosionof malware threats targeting it. As both Android malware and the operatingsystem itself constantly evolve, it is very challenging to design robustmalware mitigation techniques that can operate for long periods of time withoutthe need for modifications or costly re-training. In this paper, we presentMaMaDroid, an Android malware detection system that relies on app behavior.MaMaDroid builds a behavioral model, in the form of a Markov chain, from thesequence of abstracted API calls performed by an app, and uses it to extractfeatures and perform classification. By abstracting calls to their packages orfamilies, MaMaDroid maintains resilience to API changes and keeps the featureset size manageable. We evaluate its accuracy on a dataset of 8.5K benign and35.5K malicious apps collected over a period of six years, showing that it notonly effectively detects malware (with up to 99% F-measure), but also that themodel built by the system keeps its detection capabilities for long periods oftime (on average, 86% and 75% F-measure, respectively, one and two years aftertraining). Finally, we compare against DroidAPIMiner, a state-of-the-art systemthat relies on the frequency of API calls performed by apps, showing thatMaMaDroid significantly outperforms it.
机译:Android平台的日益普及导致针对它的恶意软件威胁激增。随着Android恶意软件和操作系统本身的不断发展,设计强大的恶意软件缓解技术非常艰巨,这些技术可以长时间运行而无需修改或进行昂贵的重新培训。在本文中,我们介绍了依赖于应用程序行为的Android恶意软件检测系统MaMaDroid.MaMaDroid根据应用程序执行的抽象API调用的顺序,以马尔可夫链的形式构建行为模型,并使用其提取特征并执行分类。通过抽象对其包或族的调用,MaMaDroid可以保持对API更改的弹性,并使功能集的大小可管理。我们在六年的时间内收集了8.5K良性和35.5K恶意应用程序的数据集,评估了其准确性,这表明它不仅可以有效检测恶意软件(F度量高达99%),而且还可以识别系统构建的模型长期保持其检测能力(训练后一年和两年,平均F-measure分别为86%和75%)。最后,我们将DroidAPIMiner与最先进的系统进行比较,该系统依赖于应用程序执行API调用的频率,表明MaMaDroid的性能明显优于它。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号